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Abstract. We theoretically show the existence of cascaded second-order

surface plasmon solitons propagating at the interface between a metal and a

linear dielectric. Non-local multipole nonlinearities originating from the free

conduction electron plasma of the metal lead to strong interaction between

co-propagating surface plasmon polariton beams at the fundamental and second-

harmonic frequencies. Finite element numerical modelling for an effective

two-dimensional medium explicitly demonstrates soliton formation, confirming

the theoretical results. The non-diffractive regime of propagation has been

demonstrated at a silica/silver interface for 5λ-wide surface plasmon polariton

beams with the loss-limited propagation distance of the order of 100 µm for

the 750/1550 nm wavelength pair. Plasmon–soliton formation in phase-matched

conditions has been shown to be beneficial for non-diffractive surface plasmon

polariton propagation.
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1. Introduction

One of the most striking phenomena in nonlinear physics is soliton formation. Solitons,

wave packets maintaining their shape (spatial or temporal) during propagation, may emerge

in various physical systems and were first discovered in narrow water channels [1]. This

general nonlinear phenomenon gained considerable attention with the discovery of lasers,

which enabled the observation of soliton effects in the optical domain [2, 3]. Solitons can

appear in quite a general environment where dispersion is compensated for by nonlinearity,

for example, in solids (quantum-mechanical wavepackets) and many-particle biological

systems [4]. Temporal solitons in optical fibres have particular applicative implementations

as they enable dispersionless propagation of data bit streams over long distances [3]. Spatial

solitons may be used for pattern formation in semiconductor lasers and employed for data

processing [5]. For further discussion, see the recent comprehensive review on this topic [6].

The second (lowest)-order optical nonlinearity, under certain circumstances, can lead to the

formation of temporal and spatial solitons [7].

Nano-optics is a very promising approach for achieving efficient nonlinear interactions,

since it enables the manipulation of electromagnetic modes in the near field. Sub-wavelength

waveguiding and the field enhancement associated with surface plasmon polariton (SPP)

waves supported by materials with negative permittivity can be used for controlling nonlinear

interactions [8]. Nonlinear plasmonic phenomena, such as second-harmonic generation, cross-

and self-modulation—all enhanced due to the plasmonic field––are sought in active photonic

components [9], sensing [10] and signal processing [11]. SPP propagation can be significantly

affected by the nonlinearity of the adjacent medium. Nonlinear SPPs at the interface between a

metal and a nonlinear Kerr dielectric in the presence of losses have been shown to result in the

self-focusing phenomenon with the formation of slowly decaying spatial solitons [12]. When

SPPs are guided in a layered metal/nonlinear-dielectric/metal (MIM) structure, hybrid vector

spatial plasmon–solitons may emerge. The most striking effect of plasmonics here is when the

separation between the two metal claddings of the MIM structure is reduced in order to increase

the transverse confinement into the deep sub-wavelength regime, the field envelope in the

lateral dimension (bound only by the nonlinearity) is reduced as well [13]. This is the opposite

behaviour in comparison with nonlinear all-dielectric waveguides. A partial compensation of

the propagation losses of surface plasmon soliton (SPS) in MIM structure was proposed in [14],
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where tapering at a properly chosen angle leads to additional field enhancement, thus enabling

longer soliton propagation. The combination of gain and loss media, adjusted to metal films,

can lead to stable spatial plasmon–solitons formations [15].

While many of the previous studies considered SPP self-focusing phenomena and soliton

formation owing to adjacent nonlinear material, metals themselves are very nonlinear. The

Kerr-like ponderomotive nonlinearity of noble metals in the infrared spectral range was shown

to be comparable with that in highly nonlinear crystals [16]. Parametric optical processes

in a metal result from both local interband-based nonlinearity and free-electron plasma-

related nonlinearity, and in most cases, from a combination of them. Metal interfaces are also

advantageous for the observation of second-order nonlinear processes requiring broken spatial

symmetry [8]. The required conditions are simply fulfilled by geometric violation of reflection

symmetry at the metal–dielectric interface where SPPs reside. Therefore, there is an opportunity

to use the second-order nonlinear effects in metal to control SPP propagation.

Second-order nonlinearity (χ(2)) can lead to spatial solitary wave formation via the

effect of second-harmonic generation, as was theoretically predicted [7] and experimentally

demonstrated almost two decades ago in potassium titanyl phosphate (KTP) crystals [17] and

planar LiNbO3 waveguides [18]. The principle behind such spatial solitons is the collinear

propagation of two beams at fundamental and second-harmonic frequencies. These beams

exchange their energies via second-order polarizability, which coined the term ‘cascaded χ(2)

solitons’. Such an exchange provides the maximum phase delay at the region of high intensity,

resulting in self-focusing. This nonlinear phenomenon provides vast opportunities for applica-

tions and fundamental studies of soliton effects, as was discussed in a comprehensive review on

this topic [19].

In this paper, we demonstrate the concept of cascaded χ(2) SPSs propagating at the interface

between a linear dielectric and a metal with the nonlinearity described by hydrodynamic

equations for conduction electron motion, showing that the beam propagation can be described

by the effective nonlinear Schrödinger equation. These theoretical predictions are supported

by the effective two-dimensional (2D) numerical model, demonstrating soliton formation in an

explicit way in the regime of realistic propagation losses with about 100 µm propagation length

for the 750/1550 nm wavelength pair. Furthermore, the role of phase matching between the

first and the second harmonics on soliton formation has been considered and shown to provide

smaller soliton beam widths.

2. Metal nonlinear polarizabilities

Hydrodynamic equations provide a satisfactory description of electrons’ dynamics in the

conduction band of noble metals such as silver and gold. Traditionally, material susceptibilities,

linear as well as nonlinear, are derived with the help of averaged quantities: electron density

(n = n0 + n1 e−iωt + n2 e−2iωt + · · ·) and average electron velocity (v = v1 e−iωt + v2 e−2iωt + · · ·).
The basic result for the linear response is the well-known Drude model, which fits experimental

data considerably well away from the plasma frequency and interband transitions. Higher-order

corrections and the introduction of additional terms such as quantum pressure and viscosity

of electron gas may lead to spatial dispersion contributions and temperature dependence of

the appropriate optical constants (see [20] and references therein). Careful inclusion of losses

and interband transitions in the framework of the hydrodynamic model provides a more

comprehensive but at the same time more complex formulation [21]. Nevertheless, the basic
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result of the Sommerfeld free-electron model extension for nonlinear polarization
−→
P

(2)
(ω, ω)

is based on the derivations of Bloembergen et al [22], which is in the basis for other advanced

models.

Expanding the electromagnetic fields in terms of the fundamental and higher harmonics−→
E =−→E1 e−iωt +

−→
E2 e−2iωt + · · ·, −→H =−→H1 e−iωt +

−→
H2 e−2iωt + · · · and substituting them into

hydrodynamic equations, the basic second-harmonic polarization can be derived [22]:

−→
P

(2)

NL (ω, ω)=
eεbω

2
p

4mω4
(
−→
E1 · E∇)

−→
E1 +

eεb

2mω2
(∇ ·−→E1 )

−→
E1 , (1)

where ω2
p = n0e2/mεb is the electron plasma frequency, ω is the field angular frequency, n0 is

the unperturbed electron concentration, m is the electron effective mass and εb is the background

permittivity. This polarization term describes the frequency doubling. In a similar fashion, the

polarization describing the down-conversion process can be derived:

−→
P

(2)

NL (2ω,−ω)=− eεb

ω2m
(∇ ·−→E2 )

−→
E1

∗
+

eεb

2ω2m
(∇ ·−→E1

∗
)
−→
E2 . (2)

Equations (1) and (2) reveal the possibility of the energy exchange between two co-

propagating beams at the frequencies of x and 2x through the second-order nonlinearity in

metals.

3. Nonlinear equations for general cascaded surface plasmon solitons

The geometrical configuration of co-propagating SPP beams considered in the following is

depicted in figures 1(a) and (b). In the linear regime, the SPP modes on the metal–dielectric

interface are described by

Ei(z, t)= Ai(y, z)
[

x̂ei x + iẑei z

]

e−iβi z+iωi t ,

βi =
ωi

c

√

εm(ωi)εd

εm(ωi) + εd

,

k2
id,m = β2

i −
ω2

i

c2
εd,m,

ei x =±
βi

ki

e∓ki x , ei z = e∓ki x ,

(3)

where i = 1, 2 corresponds to the waves at the fundamental and second-harmonic frequencies,

Ai(y, z) is the spatially-dependent mode amplitude, βi is the linear propagation constant and

εd,m are the linear permittivities of dielectric and metal. Taking into account that the SPP modes

are transverse-magnetic (TM)-polarized, the nonlinear wave equation can be decomposed into

the x- and z-components, and by subtracting the identities for linear propagation regime, we

obtain

∂yy Ai ei x e−iβi z+iωi t − i ∂z Ai∂xei z e−iβi z+iωi t − 2i βi∂z Ai ei x e−iβi z+iωi t −µ0∂t t PNL x = 0,

∂yy Ai ei z e−iβi z+iωi t + i ∂z Ai∂xei x e−iβi z+iωi t + i µ0∂t t PNL z = 0,
(4)

where ∂α denotes the derivative with respect to subscript index α and µ0 is the vacuum

permeability (non-magnetic materials were assumed).
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Figure 1. (a) Schematic diagram of a suggested experimental setup: light at

the fundamental and second-harmonic frequencies is coupled to the SPPs co-

propagating at the interface between a metal and a linear dielectric. (b) Cascaded

χ(2) soliton geometry: co-propagating SPP beams at the fundamental and second-

harmonic frequencies can be coupled via the metal nonlinearity. The field

distributions of both SPP beams are shown.

Multiplying the set of equations (4) by ei x and ei z, respectively, and summing up the results

taking into account the identity for waveguide modes (ei x∂xei z = ei z∂xei x ), we arrive at

∂yy Ai(e
2
i x + e2

i z) e−iβi z+iωi t − 2iβi ∂z Ai e2
i x e−iβi z+iωi t −µ0∂t t PNL xei x + i µ0∂t t PNL zei z = 0. (5)

This is a general expression for nonlinear TM modes, similar to the one derived in [12].

Integration over the transverse direction of the waveguide results in

∂yy Ai

[∫ ∞

−∞
(e2

i x + e2
i z) dx

]

e−iβi z+iωi t − 2iβi ∂z Ai

[∫ ∞

−∞
e2

i x dx

]

e−iβi z+iωi t

−µ0∂t t

∫ ∞

−∞
(PNL xei x − iPNL zei z) dx = 0. (6)

This set of equations (i = 1, 2) describes the self-consistent process of energy exchange between

two propagating SPP beams, coupled via any general nonlinear polarizability term.

4. Cascaded surface plasmon solitons originated from hydrodynamic nonlinearity

After derivation of equation (6), the next task is to incorporate the actual nonlinear

polarizabilities given by equations (1) and (2). First, we observe that since SPPs are TM modes,
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the relation (
−→
E · −→∇ )

−→
E = (∇ ·−→E)

−→
E holds simplifying the subsequent derivations. It can be

seen that ∇ ·−→E is non-vanishing only at the boundary and, in fact, it provides the measure of

the polarization charge density at the interface between the metal and dielectric. The integration

of equation (6) will eliminate the delta function, corresponding to the surface charge density and

will retain the field values in the metal next to the boundary. Typically, far from surface plasmon

frequency, the longitudinal (directed along z) component of the SPP field in metal dominates

the transverse one by ∼ |εm| times (two orders of magnitude in the infrared spectral range) and,

hence, may be kept as the source of the leading term in the nonlinear polarization with the

other components neglected (they can be taken into account with the mere result of algebraic

complications). Defining the nonlinear coefficients α = (eεbω
2
p)/(4mω4) + (eεb)/(2mω2) and

β = (eεb)/(2mω2), the resulting equations for the fundamental and second-harmonic SPPs can

be written as

∂yy A1

[∫ ∞

−∞

(

e2
1x + e2

1z

)

dx

]

e−i β1z+i ωt − 2i β1∂z A1

[∫ ∞

−∞
e2

1x dx

]

e−i β1z+i ωt

+i µ0ω
2β

(

β∗1
k∗1m

− 2
β2

k2m

)

A∗1 A2 ei(β1−β2)z+i ωt = 0, (7)

∂yy A2

[∫ ∞

−∞

(

e2
2x + e2

2z

)

dx

]

e−i β2z+i 2ωt − 2i β2∂z A2

[∫ ∞

−∞
e2

2x dx

]

e−i β2z+i 2ωt

+i 4µ0ω
2α

β1

k1m

A2
1 e−2i β1z+i 2ωt = 0.

Introducing abbreviations Ii =
∫∞
−∞ (e2

i x + e2
i z) dx , IXi =

∫∞
−∞ e2

i x dx , N1 = i µ0ω
2×

β

(

β∗1
k∗1m

− 2 β2

k2m

)

, N2 = i 4µ0ω
2α

β1

k1m
and 1= 2β1−β2, we rearrange the set of equations (7) as

∂yy A1 I1− 2i β1∂z A1 IX1 + N1 A∗1 A2ei 1z = 0,

∂yy A2 I2− 2i β2∂z A2 IX2 + N2 A2
1ei 1z = 0.

(8)

Assuming also a large momentum mismatch between the fundamental and second-harmonic

SPPs (approximation of [23]) which may usually be justified due to the SPP dispersion, we can

show that the second equation of the set of equations (8) will result in

A2 =
N2 e−i1z

2β21IX2

A2
1. (9)

Substituting this amplitude back into the first equation in the set of equations (8), we

obtain

I1

2β1 IX1

∂yy A1− i ∂z A1 +
N2 N1

4β2β11IX1 IX2

|A1|2 A1 = 0, (10)

which is the final result of our derivations. Equation (10) is the nonlinear Schrödinger equation

(NLSE) describing the nonlinear propagation of the first-harmonic (fundamental) SPP mode

on the surface of the metal exhibiting second-order nonlinearity, with a possible solution

corresponding to a solitary wave. It is the most general tool for soliton description, and its
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coefficients indicate whether solitons can emerge. Even though the derivations rely on the large

momentum mismatch, the final result for the effective nonlinear coefficient in equation (10)

singularly grows close to the phase-matching condition, indicating its possible advantage.

5. Numerical simulations

To further investigate the nonlinear interaction between the SPP signals, finite-element

numerical simulations were employed. SPP modes are strongly confined to the metal–dielectric

interface where the nonlinear interactions take place. For the sake of numerical simplicity, we

have studied a general 2D model of cascaded χ(2) solitons for which the signal dependence on

the x-coordinate was omitted, qualitatively not affecting the results, since x is a dummy variable

in equation (10). At the same time, the mismatch between the effective refractive indices for the

fundamental and the double-frequency beams, reflecting the dispersion of the SPP waves and

determining the essential phase relations between the waves, was taken into account. The finite

propagation distance of SPPs, which is determined by Ohmic losses in the metal, was also taken

into account.

Initially, we studied the linear regime of SPP propagation at the silica/silver interface

with ε
Ag

1 =−120 + 3i, ε
Ag

2 =−27 + 0.32i at λ1 = 1500 nm and λ2 = 750 nm, respectively [24].

In this case, the SPP refraction indices for the simulated effective medium for the first and

second harmonics are neff
1 = 1.457 + 3.25× 10−4i and neff

2 = 1.514 + 7.5× 10−4 i, corresponding

to the mismatch between the wavevectors of approximately 3.8% and the SPP propagation

lengths of 370 and 80 µm, respectively. At the excitation boundary (z = 0), the SPP beams

at the fundamental and second-harmonic frequencies were set to propagate collinearly along

the z-axis with the transverse profile described by the Gaussian distributions E1,2(y, 0)∼
A1,2(y, 0)∼ exp (−y2/w2

1,2) with half-widths of w1,2 = 2.5λ1,2. Their spatial evolution was then

studied. The intensity distributions |E1,2x |2 obtained in the linear (uncoupled) regime show

typical diffraction-governed propagation for both fundamental and second-harmonic SPP beams

(figures 2(a) and (e)).

To prove the soliton formation resulting from the derived hydrodynamic model in a more

general case of arbitrary modal dispersion (equation (10) is a particular case when 1≫ 0),

we have introduced into the material polarization the corresponding nonlinear terms P1,NL =
χ(2) (E1)

∗ E2 and P2,NL = 1/2·χ(2) (E1)
2 assuming the excitation field amplitudes for both

harmonics to be the same E1 = E2. It should be noted that the amplitudes of the fundamental

and the second-harmonic SPP waves are connected in the solitonic regime via equation (9), and

the choice of the relative amplitudes of the two waves is not important as they adjust themselves

to reach the required ratio. The nonlinear interaction was gradually increased to χ(2)E1 = 0.02,

resulting in the intensity distributions shown in figures 2(b) and (f) where deviations from the

linear propagation regime are observed. Further increase of the field to χ(2)E1 = 0.05 leads to

even more pronounced deviations from the diffractive propagation regime (figures 2(c) and (g)).

The observed intensity fringes are defined by the mismatch between the SPP effective refraction

indices at the two frequencies. At the same time, the energy exchange between the beams can

be seen: the maximum intensity of one beam corresponds to the minimum intensity of the other

(cf cross sections B and C in (c) and (g)). The same effect can be seen in the actual intensity

plots along these cross sections (graphs (d) and (h)). Furthermore, the effect of narrowing of the

SPP beams, driven by the nonlinearity, can be seen in the decrease in the average beam width
1

2
(w1,B + w1,C)/w1,A = 0.94 for the fundamental frequency and 1

2
(w2,B + w2,C)/w2,A = 0.8 for

New Journal of Physics 15 (2013) 013031 (http://www.njp.org/)
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Figure 2. Linear propagation of (a) the fundamental and (e) the second-harmonic

SPP beams in effective 2D medium (Au/silica interface) with the effective

indices neff
1 = 1.457 + 3.25× 10−4 i and neff

2 = 1.514 + 7.5× 10−4 i at 1500 and

750 nm wavelengths, respectively. Nonlinear propagation and self-focusing of

(b, c) the fundamental and (f, g) the second-harmonic SPP beams for different

light intensities corresponding to (b, f) χ(2)E1 = 0.02 and (c, g) χ(2)E1 = 0.05

nonlinearities. The initial amplitudes of both beams are equal (E1 = E2) and the

beam half-widths are w1,2 = 2.5λ1,2. The graphs (d) and (g) show the intensity

plots along cross sections indicated in (a, c) and (e, g), respectively.

the double frequency, where wB and wC are the interchanging maximum/minimum of SPP

beam widths in the solitonic regime, and wA is the beam width in the linear (non-interacting)

propagation regime at the same average distance. It should be noted that the largest modulation

of the intensity profiles is in the centres of the beams, where intensities are highest and nonlinear

coupling is strongest.

One of the assumptions made prior to derivation of equation (9) is the large wavevector

mismatch between the fundamental and second-harmonic SPPs. At the same time, the

nonlinear coefficient (N2 N1)/(4β2β11IX1 IX2) in this equation has the mismatch term 1 in

the denominator and, hence, is larger for smaller mismatches. In these circumstances, the

numerical simulations provide a vital opportunity to extend the analytical theory and to address

the particularly interesting scenario when the mismatch is zero so that the phase-matching

conditions are realized.

Phase matching between the fundamental and second-harmonic SPPs can be obtained by

introducing at the SPP-supporting interface dielectric having anomalous dispersion [25] to com-

pensate for the SPP dispersion. Adjusting the glass composition to 5 TiO2–55 SiO2–40 Na2O,

it is possible to achieve a match between the real parts of the effective refractive indices

New Journal of Physics 15 (2013) 013031 (http://www.njp.org/)
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Figure 3. Linear propagation of (a) the fundamental and (d) the second-harmonic

SPP beams at Au/dielectric interface with equal parts of the effective indices

neff
1 = 1.583−4.16× 10−4i, neff

2 = 1.583−8.6× 10−4i. Nonlinear propagation

and self-focusing of (b, c) the fundamental and (e, f) the second-harmonics SPP

beams for different light intensities corresponding to (b, e) χ(2)E1 = 0.02 and

(c, f) χ(2)E1 = 0.05. The amplitudes of both beams are equal (E1 = E2) and the

beam half-widths are w1,2 = 2.5λ1,2. (g) The dependence of the soliton width

on its inverse amplitude at constant nonlinearity: the symbols present numerical

data, the black line is a guide to the eye and the red line is the theoretical fit using

equation (10).

Re(neff
1 )= Re(neff

2 )= 1.583. The evolution of the SPP beams for the linear and nonlinear cases

at this interface was then studied. The resulting intensity maps are presented in figure 3. One can

clearly see the evident transformation of the SPP modes into highly localized non-diffracting

solitons. Moreover, in this case, the nonlinearity allows us to achieve SPP beams with a narrow

spatial profile; the self-focusing effect occurring near the excitation boundary can also be seen

(figures 3(c) and (f)).

6. Discussion

The general solution of the NLSE predicts certain relations between soliton amplitude

(A), width (w) and effective cubic nonlinearity of the medium. Applying this property

to the cascaded soliton described by equation (10), the following relation should hold:

Awχ̃ (2) = const, where χ̃(2) ∼√αβ is the geometrical average of the second-harmonic and

down-conversion susceptibilities. In order to check the validity of this relation, we have
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performed numerical studies, observing the relation between A and w while keeping the

nonlinearity constant. Figure 3(g) shows the resulting dependence of the soliton width on its

inverted amplitude. The numerical data follow the analytical predictions when the soliton width

is larger than the classical diffraction limit. However, for the transversal beam dimensions of the

order of the wavelength, significant deviations from linear dependence have been observed.

Addressing the possibility for experimental demonstration of the proposed phenomenon

and taking into account the measured values of metal nonlinearities, we have estimated the

required optical intensities and compared them with damage thresholds. The laser-induced

damage thresholds of thin metal films are strongly dependent on the quality of the surface.

The damage fluence for high-quality silver mirrors is of the order of 0.3 J cm−2 for 50 fs

pulses at 800 nm wavelength. The reported surface nonlinearity of the metal is of the order

of 30× 10−14 cm2 per statvolt [26], and the field amplitudes needed for soliton generation are

less than 1 GV m−1, which is still significantly less than the damage threshold. The increase

of transversal dimensions of the soliton will reduce its amplitude (figure 3(g)), pushing the

required intensity even further away from the damage threshold. Moreover, surface patterning

may effectively increase overall nonlinearity by employing structures with on-demand optical

response [27], which could provide resonances at both fundamental and second-harmonic

frequencies, thus maximizing the efficiency of the nonlinear interactions [28]. Various types

of plasmonic waveguides, e.g. metal–insulator–metal structures [29], may be considered and

could further reduce the required intensities for cascaded plasmon–soliton formation.

The soliton generation proposed and described above occurs at continuous (unstructured)

metal surfaces. However, a very remarkable and application-promising phenomenon of

diffraction compensation could emerge in discrete systems that can be realized, e.g., in an array

of coupled waveguides. In the linear propagation regime, the optical energy will spread away

from the waveguide where it was initially launched due to electromagnetic coupling to the

neighbouring waveguides. However, in the presence of nonlinearity in the coupled waveguide

system, the energy spreading can be compensated for and discrete solitons could emerge [30].

Various photonic realizations of this phenomenon [31] and remarkable optical analogues of

quantum effects [32] have been demonstrated. Plasmonic counterparts of the discrete soliton

phenomenon have also been studied in arrays of planar [33], wire [34] waveguides and square

lattice of nanowires supporting vortical plasmonic lattice solitons [35].

Besides the nonlinear approach for diffractionless propagation of waves, it is worthwhile

to mention linear methods to obtain similar behaviour. The most widely known examples here

are Bessel [36] and Airy [37] beams, which maintain their profiles along the propagation

direction, but relying on an infinite number of side lobes. However, even with a limited

transverse size, diffractionless propagation may be obtained with a good approximation.

Theoretical predictions were supported by many optical experiments, among them free-space

Airy beams [38], their SPP counterpart [39] and SPP beams with controllable trajectories [40].

Other interesting difractionless surface waves, such as cosine-Gauss type [41] and spatially

accelerating waves [42], were experimentally demonstrated, as well as bulk non-paraxial

realizations [43, 44]. While these linear approaches do not require high powers, they need a

specific complex sub-wavelength structuring of the surface (or spatial amplitude modulation)

in contrast with nonlinear diffractionless solitons, which can be achieved on unstructured metal

interfaces.
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7. Summary

We have derived the NLSE describing the SPP soliton formation in the cascaded second-order

nonlinearity regime. The nonlinearity originates from the presence of the metal interface and is

derived using the hydrodynamic description of free-electron plasma. Finite-element simulations

performed with rigorously introduced second-order coupling between the fundamental and the

second-harmonic beams confirm the formation of cascaded plasmon solitons, underlining the

benefits of phase matching for non-diffractive SPP propagation over distances of hundreds of

microns.
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